

Robotics for Recycling Industry

Nathan Bargman (CS, HUA), Kaitlyn Fichtner (CS, RBE), Mary Marquette (RBE, ME),
Garett Ruping (CS, RBE), Conrad Tulig (CS, RBE), Lauren Wach (RBE)
Advisors: Professor Berk Calli (RBE), Sarah Jane Wodin-Schwartz (ME), Jennifer Rudolph (HUA)

Abstract

We designed an autonomous system which is capable of detecting and removing recycled materials from a conveyor belt using deep learning object localization and classification as well as a bi-directional arm with pneumatic suction cups. We also created our own dataset to train our deep learning model and a user interface to correct it during operation. Our project's goal is to help innovate material recovery facilities' sorting methods required to separate materials before they can be recycled.

Figure 1: ZeroWasteAug [1] (left) and Sagamore Lab (right)

Model & Training

Model	Size	All (AP)	Card- board (AP)	Metal (AP)	Rigid Plastic (AP)	Soft Plastic (AP)
Faster R-CNN	800 MB	65.45	72.59	65.66	51.60	71.94
YOLOV5	14 MB	68.80	73.40	71.30	56.90	73.50

Table 1: Results on Sagamore Lab test images, model pre-trained on ZeroWasteAug and fine-tuned on Sagamore Lab dataset

List of new

TrashItems

YOLO v5s

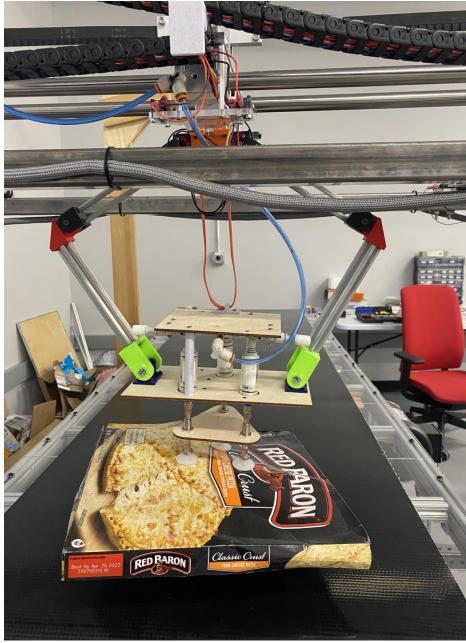
Classification

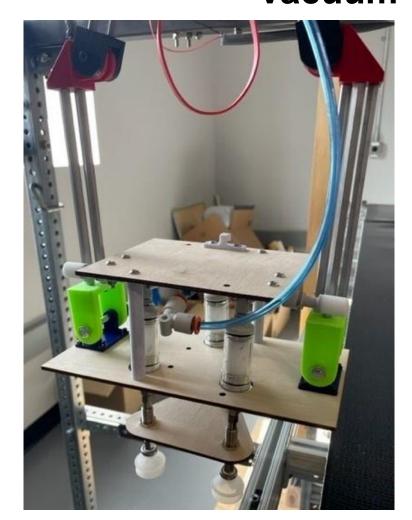
Trashitems by

New Image

Received

Waste Sorting System




Figure 3: Robotic Arm

Soft Plastic 55 Soft Plastic 55 Soft Plastic 76 Plastic 76 Plastic 76 Plastic 76 Plastic 76 Plastic 76

Figure 4: GUI

- Vacuum gripper
- YOLOv5 object detection model
- GUI for human robot interaction
- Kalman filter combines predictions

Vacuum Gripper Design

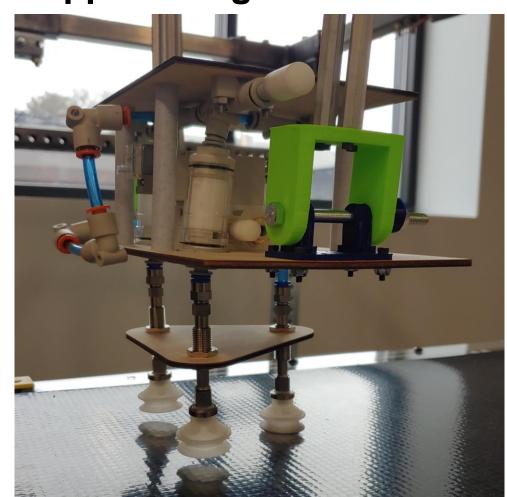


Figure 6: Front and side view of gripper design

- A new gripper was designed to pick up flat pieces of cardboard
- Vacuum gripping was chosen and proved most reliable

Human Robot Interaction

- Create, edit, & delete bounding boxes and classifications
 Pause camera feed to
- Pause camera feed to draw annotations
- Start & stop detection system

Below Threshold

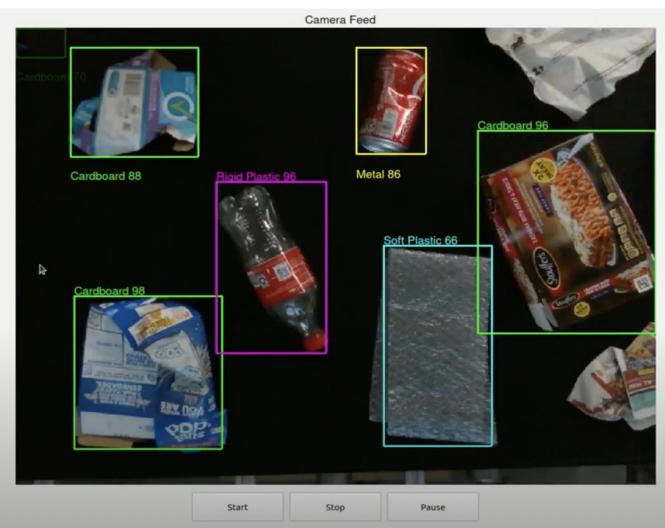


Figure 5: GUI

Low X Pos

Results

Trial	3 objects without HRI	3 objects with HRI	6 objects without HRI	6 objects with HRI
Detected Total	15 (75%)	20 (100%)	16 (80%)	20 (100%)
Hit Total	13 (87%)	19 (95%)	13 (81%)	17 (85%)
Picked Up Total	11 (85%)	16 (84%)	11 (85%)	14 (82%)
Accuracy	55%	80%	55%	70%

Table 2: Experimental results for 20 rounds of each trial type. In each round the specified number of objects, including one piece of cardboard, were placed on the belt

Updated TrashItem List Check Cardboard Check Cardboard Check X Pos X Pos X Pos X Pos X Pos X Pos X Pos

Not Cardboard

Figure 3: Flowchart for object tracking

existing

Trashltem

Pass IoU

Conclusion

- Successfully created a prototype waste sorting system
- Human aid provides valuable feedback to improve system accuracy
- Vacuum gripping has more possibilities than just flat pieces of cardboard
- Future work might utilize multiple active robots and grippers specialized toward different materials